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 การศึกษานี้มีวัตถุประสงค์เพ่ือแก้ปัญหาขนส่งและการจัดงานท่ีมีตัวแปรตัดสินใจจํานวนมากเกินไปเม่ือใช้ซอฟท์แวร์
มาตรฐานสําหรับกําหนดการเชิงเส้น เพ่ือก้าวข้ามข้อจํากัดดังกล่าว งานวิจัยนี้นําเสนอวิธีการเพ่ิมคอลัมน์เพ่ือแก้ปัญหาท้ังสอง
ท่ีมีขนาดใหญ่ โดยพัฒนาให้อยู่ในรูปของโปรแกรมแมทแล็ป รุ่นปี 2010 และทําการคํานวณเชิงทดลองเปรียบเทียบกับคําสั่งฯ
จากกล่องเคร่ืองมือ “linprog” ซ่ึงผลการใช้งานโปรแกรม พบว่าขนาดใหญ่ท่ีสุดในการแก้ปัญหาขนส่งและการจัดงานด้วย
วิธีการเพ่ิมคอลัมน์ คือ 16,333 ลูกค้า x 100 โรงงานและ 12,900 งาน x 12,900 พนักงาน ในขณะที่ขีดจํากัดของคําสั่ง 
“linprog” คือ 11,063 ลูกค้า x 100 โรงงานและ 7,400งาน x 7,400 พนักงาน ภายใต้ฮารด์แวร์ทดลองตัวเดียวกัน ส่วนเวลา
เฉลี่ยท่ีใช้ในการแก้ปัญหาฯด้วยวิธีการเพ่ิมคอลัมน์จะมากกว่าในปัญหาขนาดเล็ก แต่ความแตกต่างระหว่างของเวลาท่ีใช้ในการ
แก้ปัญหาด้วยวิธีท้ังสองมีค่าลดลงอย่างมีนัยสําคัญ เม่ือจํานวนตัวแปรเพ่ิมข้ึน ผลการทดลองครั้งนี้ยังพบว่าเวลาในการ
แก้ปัญหาฯด้วยวิธีการเพ่ิมคอลัมน์มีความเกี่ยวข้องโดยตรงกับจํานวนคอลัมน์ท่ีถูกสร้างข้ึน และยังพบด้วยว่าจํานวนเงื่อนไข/
ข้อจํากัดท่ีมีขนาดใหญ่ของปัญหาขนส่งมีอิทธิพลต่อเวลาในการแก้ปัญหาฯมากกว่าจํานวนตัวแปรท่ีมีจํานวนมากเกินไป 
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 The aim of this study was to solve the transportation problems (TPs) and assignment problems (APs) 
involved with too many decision variables when using a regular state-of-the-art linear programming (LP) 
software. To overcome its limitations, a column generation method was developed and used to solve both 
problems with large-scale sizes.  The method was coded using MATLAB 2010b and was used to compute 
experimentally as compared to the use of the regular LP-solving toolbox “linprog.”. The results of this 
experiment revealed that the largest sizes for the column generation method to solve both TP and AP 
were 16,333 customers x 100 plants/warehouses and 12,900 tasks x 12,900 assignees, respectively, while 
the largest sizes for the “linprog” to solve both were limited to 11,062 customers x 100 plants and 
7,400 tasks x 7,400 assignees respectively using the same hardware. The average computational time of 
the column generation method was greater in small-size problems; nevertheless, the difference 
between the computing times consumed by both methods reduced significantly when the number of 
variables was increased. This experiment revealed that the computation time of the TP was related 
directly to the number of new columns generated. Also, the large number of constraints of the TP 
model for the column generation technique can be more influential on computation time 
performances than the large number of variables.  
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1. Introduction 
 The decision variables in network flow 
problems, i.e. minimum cost flow, maximum flow, 
shortest path, the transportation (TP), and 
assignment problems (AP) can be solved as a 
special method. TP can be directly solved by the 
stepping stone and the modified distribution 
method and AP can be also solved by the 
Hungarian algorithm.  Normally, the classical 
simplex method still enables to solve the both 
problems. However, this method involves the 
large number of variable, whereas the column 
generation technique enhances efficiently to solve 
both problems with creating less variables. 
Applications of the transportation and assignment 
problems tend to require a very large number of 
related constraints and variables, so solving these 
may require a vigorous computation effort [13]. 
The reviewed paper [1] indicated that the first 
successful method of G.B. Dantzig [15] could solve 
both the transportation and transshipment 
problems efficiently. This method uses the primal 
simplex method to manipulate the network 
structure that is applied to transportation 
problems and is sometimes referred to as the 
Row-Column Sum method or the modified 
distribution (MODI) method. The methods were 
implemented and solved TPs with many decision 
variables under a special LP structure.  
 In case there are too many variables, the 
structure can be handled and solved using 
Bender’s partitioning procedure. Such a block-
diagonal structure can also be solved using 
Rosen’s primal partitioning algorithm and Dantzig-
Wolfe decomposition algorithm [2]. However, an 
efficient algorithm for solving transportation 
problems can improve over the existing 
algorithms of the “primal-dual” type. This 
algorithm can be adapted to an n-by-n 
assignment problem. Furthermore, an auxiliary 
technique of simplifying the original network by 
means of “reduction” and “induction” was also 
introduced as a useful tool to treat large-scale 

problems [3]. The implementation of the primal 
transportation model was solved under a variety 
of large fully-dense, randomly-generated 
transportation and assignment problems ranging in 
sizes up to m = n = 3,000 [4]. G.B. Danzig 
considers the technique to reduce the 
computational requirement of large systems from 
two points of view: (1) decrease the number of 
iterations that the variants of the simplex method 
have been proposed to replace the usual Phase 
 of the simplex method, and (2) find a compact 
from for the inverse and/or by taking advantage of 
any special structure of the system of equations 
[14]. For solving the AP, a new algorithm is 
proposed which can reduce the expected 
computation time needed to find an exact 
solution by limiting the search space as much as 
possible within the scope in which no optimal 
solution is missed [5]. 
        Nowadays, spreadsheet programs can 
efficiently solve these problems; however these 
programs cannot solve many variables due to the 
limitation of the edition attached. Using Excel 
2010 solves the LP with a large number of 
variables, while the attached LP simplex engine of 
Excel’s solver is limited merely up to 200 
variables and 100 constraints. Also, some 
programs provide a source code object to solve 
large-scale linear programs; i.e. the “linprog” 
command in MATLAB software can solve large-
scale LP with the condition that the total number 
of coefficients in matrix form must be restricted to 
less than 810  elements. MATLAB’s optimization 
toolbox is widely applied to solve many type of 
the linear programming model; e.g. the primal-
dual interior-point LP [17] the augmented 
langrangian method for the large-scale LP [18] and 
the binary integer programming [19]. The solving 
method for an LP model with too many variables 
can be presented as follows. The large-scale TP is 
considered to be divided to two sub-problems: 
one using an aggregation that consolidates several 
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neighboring sources (destinations) and other using 
a process of partial disaggregation [6].  
 Column-generation approaches are among 
the efficient approaches to solving LP with too 
many constraints/variables with an early 
application found in a cutting stock problem [7]. 
Implementation of the row and column 
generation technique can solve the one-
dimensional cutting stock problem efficiently and 
effectively [8]. A hybrid-column generation and 
constraint-programming solution approach can be 
used to quickly produce solutions for operations 
management and also to produce close-to-
optimal solutions for long- and mid-term planning 
scenarios [9]. A column-generation approach code 
can be developed by systematically programming 
to solve the corresponding linear program and to 
identify the new column leading to a better 
solution; the process is repeated until the optimal 
solution is achieved [10]. With the railway crew 
scheduling problem [11], the proposed method 
can reduce the computation time by improving 
the convergence of column generation with the 
new dual inequalities. This aim of this paper was 
to propose a column-generation approach to 
solve large-scale transportation and assignment 
problems when hardware limitations of memory 
requirements were encountered. 
 
2. Methodology 
 
2.1 Transportation Problem 
 The transportation problem is a linear 
network optimization with an application for 
industrial companies having several plants, 
warehouses, sale offices, and distribution outlets 
[12]. In the classical transportation model, there 
are m supply points with items available to be 
shipped to n demand points with is = Supply 
amount at source i  and jd = Demand amount at 

destination j and ijc = Unit transportation cost 

from source i  to destination j for i = 1,2,..,m and 
j=1,2,..,n. 
 The general transportation problem is a 
special type of linear programming problem [13]. 
Let Z be the distribution cost and 

( 1, 2,..., ; 1, 2,..., )ijx i m j n  be the number of 

units to be distributed from source i to 
destination j . The linear programming 
formulation of this problem is as follows. 
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 The constraint coefficients of the linear 
programming model have a special structure as 
shown in Fig. 1. Any linear programming problem 
that joins this special formulation does not 
correspond to transportation as illustrated in the 
assignment problem. For transportation problems, 
where every is  and jd  has integer values, all of 

the basic variables/allocations (including an 
optimal one) also have integer values.     
               

 

Fig.1 Constraint coefficients of the transportation 
problem 

 Additionally, the right-hand side consists of 
supply ( is ) and demand ( jb ) respectively.  
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2.2 The assignment problem 
 The AP is a special type of TP-based linear 
programming problem where assignees are 
assigned to perform tasks [13]. For example, 
assignees might be employees that need to be 
given work assignments. Assigning people to jobs 
is a common application of the assignment 
problem. However, the assignees need not be 
people; they also can be machines or vehicles, or 
plants, or even time slots to be assigned tasks. 
The formulation of assignment problems satisfies 
the following assumptions. 
 1. The number of assignees and the number 
of tasks are the same (this number is denoted by 
n).  
 2. Each assignee is to be assigned to exactly 
one task. 
 3. Each task is to be performed by exactly 
one assignee. 
 4. There is a cost ijc associated with the 

assignee i (i =1, 2, …, n) performing task j (j =1, 2, 
…, n). 
 5. The objective is to determine how all n 
assignments should be paired to order to 
minimize the total cost. 
The mathematical model for the assignment 
problem uses a binary variable as follows: 
 

1   if assignee  performs task 
   for 1,2,...,  and 1,2,...,

0   if not,ij

i j
x i n j n
  


  (2) 

  

 The binary variables are important for 
representing yes/no decisions. Let Z be the total 
cost; the assignment problem in a linear 
programming formulation is then as follows. 
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 To compare this model (without the binary 
restriction) with the TP model, both are similar in 
their structure. In fact, the assignment problem is 
just a special type of TP, where the sources now 
are assignees and the destination are tasks and 
where the number of sources m = the number of 
destinations n, and every supply is =1 and every 
demand jd =1 for all possible i and j. 

 The constraint coefficients of its 
corresponding LP model have the special 
structure shown in Fig. 2. For the AP, where every 

is  and jd has an integer value equal to one, 

similar to the TP, all basic variables (assignments) 
are binary automatically. Therefore, in this case, 
the binary restriction is redundant. 
 

 
Fig.2 Constraint coefficients with right-hand sides 

for the AP model 
 

2.3. The primal and dual relationship 
 Taha [16] has stated that for the special 
structure of the LP representing the transportation 
model, the associated dual problem can be 
written as  
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; where  
 iu = the Dual variable of the constraint 
associated (shadow price) with source i  
 jv = Dual variable of the constraint associated 

(shadow price) with destination j . 
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 The objective-function coefficients or reduced 
cost of the variable ijx are theoretically equal to 

the difference between the right-and the left-
hand sides of the corresponding dual constraint, 
that is, *

ij ij i jc c u v    [14]. However, this 

quantity must be equal to zero for each basic 
variable.  
 
2.4. Column generation  
 Column generation [8] extends the technique 
introduced in the decomposition algorithm that 
uses the simplex method and generates the 
constraint coefficient data associated with the 
additional variable only as needed in order to 
improve the objective function Z. The column 
generation approach reaches for an optimal 
solution of a great number of linear programs 
where not all of the columns have been carefully 
considered, i.e., variables in the matrix of 
constraint. The original problem includes all of 
the problem characteristics and again is called a 
master problem (MP), whereas a subset of a MP 
column is called the restricted master problem 
(RMP) or the initial basic feasible (BF) solution. 
Only a few subsets of the MP column (basic 
variable) will be in the optimal solution and all 
other columns (non-basic variable) can be 
omitted. In a minimization problem, the column 
(basic variable) that has negative reduced cost 
must be selected to add as an attaching column 
with the matrix of the RMP. This procedure 
terminates when the reduced cost of all columns 
must be positive; consequently, solving the RMP 
by adding the last column can lead to an optimal 
solution. A master problem is given in equation (1) 
and (3), where n is very enormously large, and a 
direct solution solved by a regular state-of-the-art 
LP software is not feasible due to out-of-memory 
requirements. Then, the restricted master 
problem can be truncated as follows: 
 The constraint of the RMP can be constructed 
using a general procedure [13]; i.e., the northwest 

corner rule (NWC), the least cost method (LCM), 
Vogel’s approximation method (VAM), and 
Russell’s approximation method (RAM). The 
constructing of the RMP or an initial basic feasible 
(BF) solution is an important step in solving the TP 
and AP. This paper alters the Northwest corner 
rule to construct the initial matrix of the RMP. The 
advantage of this rule is its simplicity, while its 
disadvantage is due to non-cost considerations 
during allocations. Next, the column-generation 
method for solving the linear programming model 
of the transportation and assignment problems 
with too many variables is systematically 
described in the following steps. 
 First, start with the RMP generated by the 
northwest corner rule resulting in J = m+n-1 
variables and m+n constraints. It is an initial basic 
feasible solution, which can be improved later 
using the optimization tool. 
 The initial BF solution or RMP of the 
assignment problem can be constructed with J = 
2n-1 variables and 2n constraints. The coefficients 
of constraint are allocated by arranging the 
coefficient on a diagonal line from the northwest 
corner to southeast corner of the RMP. Therefore, 
this RMP does not concern the target cost as well 
as the RMP of the TP does. 
 After constructing the RMP, the classical 
simplex method solves this linear program and 
gives the optimal shadow price 
( 1 2, ,..., mu u u 1 2; , ,..., nv v v ) for all constraints. 
Other variables with 1 2 ... 0J J nx x x      are 
non-basic solutions. The optimality test of this 
solution is to compute ijc . If ijc  for all i and j 

reduced costs of any variable in the MP is less 
than zero, the column-generation approach 
accounts for adding a variable to the RMP. Then, 
the simplex method solves this new RMP 
repeatedly until the reduced costs of all of the 
variables in the MP are at least zero.  The last 
RMP is the optimal solution for the problems. An 
efficient column-generation approach depends on 
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the initial basic solution; that is, it should be 
closely optimal [10]. In summary, the proposed 
column-generation approach can be illustrated in 
the following flowchart. 
 

 

Fig. 3 Flow chart of the column-generation 
approach 

2.5 A numerical example 
 The MATLAB 2010b was used to write the 
source code. This paper employs two approaches 
for the TP. First, approach T1 constructs the initial 
BF solution using the northwest corner rule and 
the column-generation technique to solve the 
corresponding LP sequentially; and the second 
approach T2 constructs the full constraint 
coefficients of TP (Fig.1) and solves the relevant 
LP using the simplex method. For the AP, 
approach A1 constructs the initial BF solution 
from a diagonal line matrix and uses the column-
generation technique to solve the LP, and 
approach A2 constructs the full constraint 
coefficient of the AP (Fig.2) and solves the LP 
using the simplex method. This framework of 
experiment is illustrated in Fig. 4. 

 

Fig.4 The framework of Approach T1, T2, and A1, 
A2 

 
 Each approach in Fig. 4 was  programmed and 
executed using each  source code of the MATLAB 
software. How to solve TP using the column 
generation technique that can illustrate  a simple 
test problem from OR library [20]. The ran4x64 
test problem contained 4 plants [112 109 131 
318] , 64 customers [6 8 8 …15]  and 256 cost per 
unit [1 1 4 4 7…9]. This test problem was solved 
as follows:    
      1. Construct the basic feasible solution using 
the northwest corner rule and the restricted MP 
as follow: 
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 2. Solving the RMP using the classical simplex 
method.  
 
[RMP] [x]    =     [b] 
               

 
 3. The shadow prices are calculated from 
command “linprog”in step 2 as follow: 
 
1st Iteration: The shadow prices are 

  

[ 1 2 3 2] =[1 2 3 2]              for 1,2,3,4
[0 0 -3 -3...-11] = [0 0 3 3...11]for 1,2...64

i

j

u i
v j
   

   
  
4. Calculate the reduced cost ( )ijc  of each 

variable. 
 
1st Iteration: 

, ,

1,1 1,1 1 1

1,2 1,2 1 2

1,3 1,3 1 3

1,13 1,13 1 13

1 1 0 0

1 1 0 0

4 1 3 0
.     .       .      .       .       .        .

7 1 8 2
.     .       .      .       .       

i j i j i jc c u v

c c u v

c c u v

c c u v

c c u v











  

      

      

      

       

2,23 2,23 2 23

4,64 4,64 4 64

.        .
2 2 13 13  

.     .       .      .       .       .        .
9 ( 2) 11 0

c c u v

c c u v





       

       

 

       
 So 2,64c = -13 is a minimal reduced cost that 

constraint supply is i = 2 and constraint demand 

is j = 23.  There is any reduced cost from 1st 
iteration less than zero. 
 5. Add the new supply constraint i=2 and the 
new demand constraint i=27 on the last column 
of the restricted MP [68 x 67] as follows: 

 
 6. Turn to step 2 and calculate the new 
reduced cost. If any reduced costs are negative 
the iteration will proceed later.  
 7. Finally, the 46th iterations had calculated 
until all the reduced costs were nonnegative. The 
last RMP [68 x 112] was solved LP by the classical 
simplex method. The objective function of this 
problem was involved 1806.    
 This study interests the largest scale size and 
the computation time. The proposed programs 
used random numbers to generate the data for 
the number of customers, plants/warehouses and 
cost per unit. All developed programs were 
performed using a Toshiba “Satellite” Notebook 
with processor: Intel ® core ™i5-2430M 
CPU@2.40GHz 2.74 GB usable RAM and the 
operating system was Windows 7.  
 
3. Results and Discussion 
 
3.1 The largest scale sizes 
 When the scale sizes of Approach T1 and A1 
were expanded to the largest scale sizes, the 
scale size was difficult to achieve because of the 
long period of operation. The largest sizes of 
Approach T1 and A1 were 16,333 customers x 100 
plants and 11,063 customers x 100 plants. 
Approach T1 could solve a larger number of 
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customers than Approach T2 at about 47.64%, 
while the largest scale sizes of Approach A1 and 
A2 was able to reach 12,900 tasks x 12,900 
assignees and 7,400 tasks and 7,400 assignees. 
Approach A1 could solve a greater number of 
tasks/assignees than Approach A2 at about 
74.32%, as shown in Table 1. 
 
Table 1 The largest scale sizes 
Pro- 
blem 

Experiments The largest 
scale sizes 

%  
Expansion 

TP Approach T1 16,333x100 47.64% 
Approach T2 11,063x12,900 

AP Approach A1 12,900X12,900 74.32% 
Approach A2 7,400X7,400 

 
3.2 The computation time 
 This experiment was carried out on a 
commercial notebook for solving the LP solution, 
which could be used simply and inexpensively. If 
these were performed on a high-performance 
server, the computation time would have 
certainly been lower. The amount of computation 
time is a significant criterion for the operation of 
software; accordingly, a large computation time is 
unsatisfactory for implementation. In Table 2, 
Approach T1 was difficult to search the 
computation time due to long time consumed for 
column generation, while Approach T2 could 
reach easily a smaller computation time due to 
the fewer iterations of the simplex method. 
 
Table 2 The scale sizes, the computation time, 
and new columns and iterations of Approach T1 
and T2 
Items TP No. of customers x no. of plants/warehouses 

  1x 
100 

10x 
100 

100x 
100 

1000 
x100 

10000 
x100 

The 
avg. 

compu- 
tation 
time 
(sec.) 

T1 66 1120 10,254 >43,200 >43,200 
T2 0.45 26 3,567 >43,200 >43,200 

Ratio 
of the 
avg. 

T1 
& 
T2 

147 43 3 - - 

compu 
tation 

time T1 
and T2 
No. of 
new 

column 

T1 317 1,114 1,648 - - 

No. of 
itera- 
tions 

T1 305 1,246 1,213 - - 

No. of 
experi- 
ment 

20 10 10 2 2 

  
 According to Table 2, the number of 
customers increases and the computation time of 
Approach T1 and T2 also rises sharply until the 
number of customer is up to 1,000.These average 
computation times were over 43,200 sec.; 
however, the solutions of all conditions can be 
available if the program displays “busy” at the 
bottom of the screen. While the ratio between 
the computation time of T1 and T2 was reduced 
sharply, it indicates that the difference in the 
computation time of T1 and T2 diminished 
closely. This ratio was reduced from 147 to 3 
times as shown in Fig. 5. 
 

 
Fig.5 The average computation time of Approach 

T1, T2 
 

 In Fig. 5, the computation time of the scale 
size 100 x 100 Approach T1 started to rise highly 
because the column-generation approach had to 
spend computation time to solve the RMP matrix 
that was added by the large number of columns.  
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Table 3 The scale sizes, the computation time, 
and new column and iterations of Approach A1 
and A2 

Items AP No. of tasks x No. of 
assignees 

100 
x 

100 

1000 
x 

1000 

7000 
x 

7000 
The avg. 
Compu 

tation. time 
(sec.) 

A1 82 34,610 >86,400 

A2 2.14 6,446 >86,400 

Ratio of the 
avg. 

computation 
A1 and A2 

(times) 

A1& 
A2 

38 5 - 

No. of new 
columns 

A1 378 2,969 - 

No. of 
iterations 

A1 382 7,894 - 

No. of experiments 20 5 2 
  
 According to Table 3, the circumstance of the 
computation time of Approach A1 and A2 was 
similar to Approach T1 and T2. The ratio between 
the computation time of A1 and A2 reduced 
sharply when the number of customers rose. This 
implies that the ratio between the computation 
time of A1 and A2 reduces to come nearer from 
38 to 5 times shown as Fig. 6. 
 

 
Fig. 6 The computation time of Approach A1  

and A2 
 

 In Fig. 6, the computation time of the scale 
size 1,000 x 1,000 increased greatly due to long 
time for generating the new column. 
 When approach T1 was executed with 100 
customers x 100 plants/warehouses, the 
computation times varied from 893 to 21,309 sec., 
as shown in Fig. 7. This indicates that the negative 
reduced costs of new column have been 
constructed: accordingly, the column generation 
must add more columns until the reduced costs 
of all columns are nonnegative. 
 

 
Fig. 7 Relationship between the computation time 

and no. of new columns and iterations of the 
scale size 100 customers x 100 plants/warehouses 

of Approach T1 
 

 In Fig. 7, the line of computation times, new 
columns, and iterations for 100 customers x 100 
plants/warehouses using Approach T1 had the 
same characteristic. The computation time and 
the number of new columns corresponded 
directly; consequently, the computation time 
must depend on the number of new columns. 
When the numbers of customers or 
plants/warehouses   rise greatly, the computation 
time also will increase corresponding. This is 
indicated in Fig. 8. 
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Fig. 8 The influence of the numbers of customers 
and plants/warehouses affects the computation 

time 
 

 In Fig. 8, for the column-generation technique 
for the TP (Approach T1), the number of 
customers increases 10 times and the number of 
plants/warehouses is constant (100), so its 
computation time rises about 9 to 16 times, while 
the number of plants/warehouses also increases 
10 times and the number of customers is 
constant (10); consequently, its computation time 
expanded by about 600 times. The experiment of 
the column-generation method indicates that the 
number of plants/warehouses influences the 
computation time greater than the number of 
customers. 
 
4. Conclusion  
 This paper has proposed a column-generation 
approach to solve the LP for the large-scale 
transportation and assignment problem. The 
column-generation technique can solve the LP of 
transportation problem on the largest scale size: 
16,333 customers x 100 plants/warehouses, 
whereas the classical simplex method can 
compute only 11,063 customers x 100 
plants/warehouses. The column-generation 
technique can be executed with too many 
variables, which increases the number of 
customers be 47.64% from the classical simplex 
method. For the assignment problem, the column 

generation can be performed on the largest scale 
sizes: 12,900 tasks x 12,900 assignees, while the 
classical simplex method can compute only 7,400 
tasks x 7,400 assignees. This technique can be 
used with huge variables, which will expand the 
number of  tasks/assignees by 74.32% from the 
classical simplex method. The  column-generation 
method for transportation depends on the 
number of new columns generated. If more 
columns are added, the computation time will 
also be changing the numbers of customers and 
plants/warehouses directly affects the 
computation time. The impact of the large 
number of plants/warehouses (constrains) on the 
computation time is greater than the large 
number of customers (variables). 
 
5. Recommendations 
 This paper can be developed the result   as 
follows:   
 1. The efficient initial BF solution will help to 
reduce the computation time for solving the LP. 
This paper uses the northwest corner rule to 
construct the BF.  This method is not to consider 
a unit cost, whereas the least cost method or 
VAM   concern a unit cost that affects to reduce 
new column-generation and   the computation 
time. 
 2. The source code of Approach T1 and A1 
can be developed with Microsoft Visual C++ so 
that the computation time should decrease 
significantly. 
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